Probiotic Supplementation in the Diet of Rabbits - A Review

K. Geetanjali Sharma, V.K. Vidyarthi*, K. Archana and R. Zuyie

Department of Livestock Production and Management, Nagaland University, SASRD, Medziphema -797106, Nagaland, India.

Abstract
Probiotic are advocated as an alternative to antibiotic for growth promotion. They are live culture of non pathogenic organisms which are administered orally and are defined as live microbial feed supplements, which beneficially affect the host by improving its intestinal balance. Probiotic products are available in the form of oral paste, water feed additives and include microbical cell, microbical culture and microbial metabolites. Most probiotic get destroyed by up to 80 percent in the presence of antibiotics or when mixed with antimycoplasma drug in the feed. The term "pronutrient" is used in place of probiotic. The US food and drug administration used the term Direct Feed Microbetics’ (DFM) instead of probiotics and the manufactures were directed to write DFM on their products. Micro-organisms used in animal feeds are mainly bacterial strains belonging to different genera and microscopic fungi. A dose of 10^6 to 10^7 CFU/gm of feed administered continuously is necessary to obtain a balance between probiotic micro-organisms and bacteria of resident micro-flora in the gut. The microbial species used in the probiotic preparation include Lactobacillus acidophilus, L. bifidus, L. bulgarians, L. casei, L. lactis, Streptococcus faecium, Bifidobacterium bifidum, Aspergillus oryzae and L. ruminis. Probiotic strains had positive effect on animals and result as bio-regulators of the intestinal micro-flora and ultimately decreased human health risk.

Key words: Probiotic, Pronutrient, Direct feed microbetics, Antibiotics.

1. Introduction
Rabbit is considered as superior to the other livestock because it is one of the fast growing and its high prolificacy. It has a high production capacity and high feed conversion efficiency when compared to the other meat animals. Rabbits attain a slaughter age of 18-20 weeks normally when their body weight is of 3 kg. Rabbit meat is most delicious, low in fat and cholesterol (4%), easily digestible, high in protein content (25%) and low in caloric value (160 Kcal/100 g meat). Therefore, it can be consumed by heart patient and children. India is facing acute meat shortage i.e. less than 30g per capita against the recommended 125g by Nutritional Advisory Committee of Indian Council of Medical Research. This animal species has vast potential in improving the rural economy of the country by providing employment and generating income for the farmers having low and marginal land holding. In addition to these, it also plays a significant role for supply of animal protein at a cheaper cost for the overgrowing human population of the country. The importance and potential of this small versatile animal has been realized by the planners decades back, however, the development pertaining to research, extension and popularization of the species did not reach up to the expected mark. Recent Indian reports
also highlight the importance of this species for rural development programme (Das et al., 2005; Risam et al., 2005). The potential of rabbit to improve food security and nutrition has been amplified by Food and Agricultural Organisation and has proposed to promote rabbit farming in the various livestock projects all over the world. Rabbit production can serve as a vehicle to foster human development through the all elevation of poverty (Lukefahr, 1998). Rabbit are fragile animal and therefore the digestive process is very complex. That is why rabbits are sensitive to enteric diseases and especially when they are exposed to negative impacts. These problems can be avoided by antibiotics. Probiotics that contain yeast, live bacteria or bacterial spores can also prevent enteric disease of the rabbits.

Instead of growth promoters with antibiotics that kill some of the rabbit own gastrointestinal flora, probiotic promote gut colonisation and stabilize eubiosis by competitive growth against harmful micro-organism reducing the intestinal pH with production of lactic acid and encouraging digestion by producing enzyme and vitamins. This function strengthen the animals own new specific immune defence (Fortun-LaMothe and Drouet-Viard, 2002). Dietary administered probiotic bacteria were effective in preventing the growth of E. coli 0157: H7 in the intestine of neonatal rabbits (Tachikawa et al., 1998). Hamaraney et al. (2000) found a dose-dependent positive effect of probiotic bacterium on E. coli occurrence in the caecum and small intestine in young rabbit. Parker coined the term “Probiotic” in 1974 and defined it as “Organism and substance which contributes intestinal microbial balance.” The term probiotic means “for life” and has a contrast with the term antibiotic means ‘against life’. Probiotic are advocated as an alternative to antibiotic for growth promotion. Probiotic are live culture of non pathogenic organisms which are administered orally. Again, probiotic are defined as “live microbial feed supplements, which beneficially affect the host by improving its intestinal balance” (Fuller, 1989). Probiotic products are available in the form of oral paste, water feed additives and include microbial cell, microbial culture and microbial metabolites. Most probiotic get destroyed by up to 80 percent in the presence of antibiotics or when mixed with antimycoplasma drug in the feed. The term “pronutrient” is used in place of probiotic. The US food and drug administration used the term Direct Feed Microbics’ (DFM) instead of probiotics and the manufactures were directed to write DFM on their products. Micro-organisms used in animal feeds are mainly bacterial strains belonging to different genera and microscopic fungi. A dose of 10^6 to 10^7 CFU/gm of feed administered continuously is necessary to obtain a balance between probiotic micro-organisms and bacteria of resident micro-flora in the gut. The microbial species used in the probiotic preparation include Lactobacillus acidophilus, L. bifidus, L. bulgarinians, L. casei, L. lactis, Streptococcus faecium, Bifidobacterium bifidum, Aspergillus oryzae and L. ruminis. Probiotic strains should have the following desirable properties (Mathur et al., 2003; Jadhav et al., 2015).

i. Viability of probiotic organisms: Probiotic bacteria must be viable and available at high concentration, typically 10^6 CFU/gm of a probiotic. The probiotic strain in use should be resistant to stomach acidity, pancreatic secretion and bile.

ii. Bio-safety: The probiotic strain should be safe with regards to animal and human health.

iii. Adherence properties: The adherence, colonization and multiplication in the intestine are most important selection criteria for a probiotic culture.

iv. Other properties: Each probiotic strain must be host specific, i.e. they should colonise the compatible host.

Different mechanisms of probiotic action have been suggested, but most are hypothetical. The positive effect on animals can result either from a direct nutritional effect of the probiotic, or a ‘health effect’, with probiotic acting as bio-regulators of the intestinal micro-flora and reinforcing the host’s natural defenses (Guillot, 2003). Probiotic represents addition of live micro-organisms in feed showing positive effects by maintaining eubiosis (Sinovec, 2001). Normal gut micro-flora provides normal mucosal function, increase digestibility and stimulates motility and immunity. The mechanisms involved in such effects are still the matter of discussion but the most important could be so-called ‘competitive exclusion’ (CE) meaning prevention of entry and gut colonization by non-desirable bacterial populations. The importance of this stimulator lies in the fact that only healthy animals could fully express productive potential. The use of probiotics had many potential benefits and included: modified host metabolism, immune-stimulation, anti-inflammatory reactions, exclusion and killing of pathogens in the intestinal tract, reduced bacterial contamination on processed broiler carcasses, enhanced nutrient absorption and performance, and ultimately decreased human health risk (Edens, 2003; Patil et al., 2015). Consumption of fermented foods had been associated with improved health and lactic acid bacteria (lactobacillius and Bifidobacteria) had been implicated as the causative agents for this improved health. Research over the last century had shown that lactic
acid bacteria and certain other microorganisms can increase resistance to diseases. Establishment of *L. acidophilus* in the GIT helps in increasing the resistance to *Salmonella* and *E. coli* colonization (Panda *et al.*, 2000) and may even have a possible role in competitive exclusion by elimination of pathogenic organisms from the gut. The effect of probiotics had been shown to be influenced by various factors like: level of incorporation (Jadhav *et al.*, 1992), product composition and location. Probiotic generally show low efficiency under controlled experimental conditions, the activities of some probiotic seem better when the micro-flora is unbalanced (Guillot, 2003). They are also active against a wider range of condition when multiple-strain preparations are used. The available literature reveals that the response of probiotics is variable and that the key factor in successful use of probiotics has been the presence of viable bacteria in sufficient number with the capacity to colonize the GIT. One of the problems in probiotic manufacture is the practical handling of pure bacterial culture. Other factors resulting in the loss of viability during refrigeration, level of oxygen in products, oxygen permeation through the package and sensitivity to the antimicrobial substances (Dave and Shah, 1997). Usage of growth stimulators offers a certain degree of control and modification of gut population (eubiosis) whose importance in maintaining the normal health and productivity is unquestionable. After the biological (antibiotics) and technical (disinfection) era, the new ecological era is introduced in pathogen control by the use of probiotics. Ecological control of pathogenic micro-organisms through the usage of alternative growth stimulators becomes more and more the custom choice in animal husbandry and disease prevention. Therefore, more research works needs to be carried out to guarantee the safety of probiotics besides identification and characterization of active principles of them. The ultimate commercial values of probiotics however will also depend upon economical consideration. Keeping the above mentioned facts in view, the probiotic supplementation and performance of rabbits is described in this review.

2. Body Weight and Growth Rate

Csikvary *et al.* (1990) reported that 6 week old New Zealand White rabbits when supplemented with a probiotic (Lactiflorn) at 0, 0.2 and 0.8 g each every second day with drinking water gained 30.9, 31.9 and 32.6 g daily; however, when the same diet supplemented with another probiotic (Paciflor) to litter mates at 0, 50 and 100 mg/kg feed, the average daily gain was 30.15, 29.87, 30.32 and 30.71 g. The values in both conditions did not vary significantly. Blast *et al.* (1991) revealed that average daily gain increased significantly (P<0.05) in the rabbits (NZW X California) received pelleted diet with probiotic (Paciflor reg composed of Bacillus CIP 5832 spores at 10^7/g) than without probiotic. Gippert *et al.* (1992) reported that body weight gain of the rabbit increased by 3-6 percent when the probiotic (Lacto- Saac) was added to the diet at 1.0 g/ton as compared to the non-added groups. Maertens (1992) reported that when rabbits were reared with zero and 0.15% Biosaf granules (*Saccharomyces cerevisiae* concentration 5×10^6/g) weighed 2419 and 2359 g in control and 2490 and 2460 g in probiotic group under strict sanitary and normal conditions, respectively. Zoccarato *et al.* (1995) reported that body weight gain of growing rabbits was 33, 31, 34 and 29 g/day when they were given mixed feed with antibiotic (bambermycin at 4 mg/kg), sporigen probiotic (9.6×10^6 CFU/g) composed of *Bacillus subtilis* + *Bacillus licheniformis* the ratio of 50:50, antibiotic + probiotic (bambermycin at 2 mg plus probiotic at 200 mg/kg) and basal (control) diet, respectively and antibiotic and probiotic significantly (P<0.05) increased weight gain. Ayyat *et al.* (1996) observed that addition of Lacto- sacc (probiotic at 0.1 percent level) significantly (P<0.05) increased the body weight of rabbits (NZW) at 12 week and average daily gain at 8-12 week of age at protein level of 16.3 percent than that of the other protein level (18.4 percent) and age interaction. Kamra *et al.* (1996) observed that there was no difference in the live weight gain of the New Zealand White rabbits on either common pelleted diet or diet supplemented with lactic acid producing bacteria (*Lacto* at 5×10^8 cells/rabbit) or equal amount of *Lacto* and *Saccharomyces cerevisiae*. (Sacc at 5×10^8 cells/rabbit). Ahmed *et al.* (1997) revealed that growth performance of New Zealand White rabbits improved significantly when they were reared with two levels of proteins (14, 16%) and supplemented with probiotics (N-FAC 1000 at 1.0 g and CYC-100) at 2.0 g/kg feed. Lower level of protein and N-FAC 1000 exhibited more improvement than CYC-100. Kermauner and Stuklec (1998) postulated that litter weight at weaning and litter gain were significantly (P<0.05) higher in New Zealand White male rabbits following the addition of probiotic (2% kanne produced from fermentation of cereal mix-wheat, rye and oats than control group. Bonanno *et al.* (1999) revealed that weight of young rabbits (Hyla multiparus) was 992, 1061 and 1053 g at the age of 14 weeks when they were provided commercial feed along with a probiotic (containing 3×10^9 spores/g of *Bacillus licheniformis* and *B. Subtilis* in 1:1 ratio at a concentration of 600 mg/kg diet) at zero level (without probiotic), probiotic given up to 9 weeks and probiotic given up to 14 week, respectively. El- Adway *et al.* (2000) postulated the final body weight and daily gain
of New Zealand White rabbits increased significantly (P<0.01) upon the addition of addition of either 0.1 or 0.2 percent probiotic (Lact-A-Bac) or 0.05, 0.1 or 0.2 percent antibiotic (Stafac *20) than the rabbit of control group. Matusevicius et al. (2003) observed that the rabbit weight increased significantly (P<0.05) by 16.7-18.0 percent after supplementing the ration of rabbits aged 1-60 days with a probiotic preparation, i.e. probiotic strain (Bioplus-2B Reg at 400 mg/kg diet). Das and et al. (2004a) observed that New Zealand White rabbit fed with high starch diet plus 0.20 or 0.30 percent Yea-Sacc (probiotic) significantly (P<0.05) increased in final body weight and daily weight gain than those rabbits with probiotic supplementation. Abdel-Azeem et al. (2004b) revealed that final body weight and daily weight gain improved significantly (P<0.05) when the New Zealand White rabbits (35 days aged) received diet supplemented with 20 mg virginiamycin, 100 mg zinc bacitracin, 1 g bioaction (probiotic) 1.5 g and 3.0 g yeast culture (Saccharomyces cerevisiae) per kg diet as growth promoters than the control group. Amber et al. (2004) observed that Yucca schidigera extract at the rate of 250 mg/kg feed or Lact-A-Bac (probiotic) at the rate of 0.5 g/kg feed when added increased the daily weight gain significantly (P<0.05) by 12.1 percent or 9.6 percent in 5-13 week of age rabbits, respectively. Matusevicius et al. (2004) showed that the live weight of rabbits supplemented with yeasture probiotics increased significantly (P<0.05) by 16.7-18.0 percent when control ration was supplemented with 1.5 and 2.0 kg probiotic/ ton, respectively. Surdjiska et al. (2004) studied of adding 0.05 and 0.08 percent Lactina (pure culture of Lactobacillus bulgaricus, L. acidophilus, L. helveticus, L. lactis, Streptococcus thermophilus and E. faecium with a total number of 1×10^8/g microorganism) in the New Zealand White rabbit diets and observed the addition of 0.05 percent Lactina increased the average daily gain by 11.7 percent and higher dose (0.08%) did not favour better biological results. Al-Sultan (2005) observed that the body weight of rabbit was significantly (P<0.05) improved in the rabbit group fed 0.75 g probiotic (Tri-Mic) per 10 litre of drinking water that of either 0.25, 0.50, 1.00, 1.25 or 1.50 g level. Kustos et al. (2004) reported no difference in body weight and daily weight gain in Pannon White rabbits (2434 vs 2427 g and 34.4 vs 34.4 g) when received diet without probiotic (control) or with probiotic (Bioplus-2B Reg at 400 mg/kg diet). Das and Das (2006) observed that probiotic supplementation (Biovet YC at 0.2% of feed) had significantly (P<0.05) higher effect on final live weight and average daily gain in Soviet Chinchilla and Meghalaya local breeds of rabbits; however, the effect was insignificant (P>0.05) in case of all traits of New Zealand White. Matusevicius et al. (2006) revealed that dietary inclusion of probiotic (at 400 mg/kg BioPlus 2B corresponding to 1.28×10^7 colony forming units-cfu/g feedstuff, i.e. 6.4×10^7 cfu/g of Bacillus licheniformis and 6.4×10^7 cfu/g of B. subtilis pelleting) in the diet of rabbits (35 day old) did not affect body weight (77 day old) and daily weight gain (2427 g and 34.4 g/day) as compared to the control rabbits (2434 g and 34.4 g/day). Eiben et al. (2008) revealed that live weight of New Zealand White rabbits at 63 days tended to be higher both in probiotic (0.3% inulin) and tannin (0.3%) group (2043 and 2051g), intermediate in control and probiotic (1000 mg/kg of probiotic bacteria of B. subtilis and B. Licheniformis) groups (1900 and 1996 g) and lower in 0.3 percent organic acid group. The impact of probiotic was ambiguous. Pascual et al. (2008) revealed that dietary inclusion of the probiotic Toyocerin Reg (1×10^8 spores of Bacillus cereus var toyoi per g) did not affect the Epizootic rabbit growth rate when compared with control diet without probiotic. Wang et al. (2008) observed that the average daily weight gain was significantly (P<0.05) higher by 15 percent in probiotics processing water group (P), 6 percent in nanometer implement processing water group (N) and 23.9 percent in P×N group as compared to control. Abdel-Azeem et al. (2009) reported that the highest final body weight and daily weight gain of the New Zealand White rabbits (5 weeks old) were recorded with supplementation of 200 mg Bioplus 2B (probiotic) or 400 mg Bioplus 2B per kg diet than either supplementing 200 mg per kg lincofed (antibiotic) or without supplementation. Copeland et al. (2009) observed that the addition of Lactococcus lactis to the diet resulted in the appropriate growth of the body without any colonization or translocation of probiotic outside the G.I. tract than the control group without probiotic. Yang et al. (2009) reported that use of Clostridium botulinum probiotic had growth promoting property. Zonato et al. (2009) studied of addition of growth factor, i.e. control, antibiotic (0.05% zinc bacitracin) probiotic (0.15% Bacillus subtilis at 10^9 cfu/g), prebiotic (0.15% phosphorylated mannan oligosaccharides at 30%) and symbiotic (probiotic+prebiotic) in the diet of growing New Zealand White rabbits and concluded that addition of prebiotic or probiotic did not improve the weight gain of rabbits. Chrastinova et al. (2010) revealed that application of probiotic strain E. faecium AL41 strain (10^7 cfu/ml, 500 ml, animal/day) had highest body weight gain than that of either sage (Salvia officinalis at 10 ml/animal/day) or Eleutherococcus senticosus (Ginseng dry extract at 30 g/100 kg feed) or control diet without any supplements in drinking water. Dimitrova et al. (2010) observed that average live weight and gain in weight were better in rabbits.
received lucerne hay and commercial pellets and probiotic with biotin (Probikan with biotin) than those with probiotic without biotin (Probikan without biotin) or with coccidiostat eSb3 or control group. Further, the highest average daily gain and live weight were detected in rabbits breed Vesselina while the lowest in the animals of Californian breed. Onu and Oboke (2010) showed that rabbits fed 50 percent maize processing waste based diet (MPW) supplemented with 200 mg of enzyme (grindazym) or 200 mg probiotic (yeast) per kg feed had significantly (P<0.05) superior body weight gain as compared to MPW or non-MPW diet without supplementation. El-Katcha et al. (2011) reported that the influence of dietary supplementation of probiotic at 0.1 or 0.15 g/kg diet from E. faecium containing products (Protexin) had non-significant (P<0.05) improvement in body weight by about 3.3 and 4.9 percent while probiotic at 0.3 or 0.35 g/kg diet from Lacto bacillus acidophilus and other L. strain with enzyme (AM Phi-Bact) had reduced body weight gain by about 14.5 and 9.5 % respectively when compared with control. Ezema and Eze (2012) observed that inclusion of Bio-active yeast (probiotic) at a level of 0.12 g yeast/kg of diet Saccharomyces cerevisiae) had a significantly (P<0.05) higher weight gain than that of those rabbits supplemented with either 0.08 or 0.16 or zero gram yeast/kg diet. Khalil (2012) observed that rabbit fed with low protein diet and supplemented with 0.10 or 0.15 g multi-strain probiotics (protexien)/kg diet recorded 7.02 and 7.86 percent growth rate than the rabbits fed normal protein diet without probiotin supplementation. Lam Phuoc Thanh and Jamikom (2012) observed that average daily gain was increased significantly (P<0.05) in New Zealand White rabbits from 24.0 g/day in control group to 28.1 and 27.9 g/day in 1×10^7 cfu/g Lactobacillus acidophilus group and 0.5×10^7 cfu/g L. acidophilus plus 0.5×10^6 cfu/g Bacillus subtilis group. Shehata et al. (2012) postulated that addition of amino-yeast at 0.25, 0.50 and 0.75 percent significantly (P<0.05) increased the daily body weight gain of the male New Zealand White rabbits as compared to control; however, the improvement was 31, 15 and 17 percent higher in the supplemented group as compared to control, respectively. Wallace et al. (2012) revealed that supplementation of probiotic (RE3) either at 1.0 or 1.5 ml per kg feed in the diet of heterogeneous population of California White, New Zealand White and Chinchilla weaner cross-bred rabbits had no influence on live weight as compared to the control group. Brzozowski and Strzemecki (2013) observed that there was positive impact of probiotic (Bacillus cereus var toyoii) at 400 mg/kg of probiotic preparation on body weight and weight gain in young rabbits than the control group without probiotic. El-deek et al. (2013) observed that dietary supplementation of 0.2 percent Super Action Probiotic (SAP) showed significantly (P<0.01) the highest final body weight and daily weight gain in 14 week old male New Zealand White rabbit as compared to those group reared on diet supplemented with either zero or 0.1 percent SAP. Oso et al. (2013) observed that growing rabbits fed diet containing Prebiotic (MOS at 1.0 g/kg feed) showed highest (P<0.05) final live weight and weight gain as compared to either those rabbits fed on arabinoxylans oligosaccharides (Axe 1.0 g/kg feed) or Probiotic (Prediococcus acidilactis as 1×10^7 cfu/g; 0.5 g/kg feed or Bacillus Cereus as 1×10^6 cfu/g @ 0.5 g/kg feed) or even other dietary combinations. Simonova et al. (2013) observed the highest average daily gain in the rabbits fed on commercial diet along with Enterococcus faecium CCM7420 (EF) than either with Enterococcus faecium CCM7420 (EF+ES) or control group. Amber et al. (2014) observed that the rabbits (at the age of 3 weeks) when fed basal diet supplemented with MIX1 (mixture of probiic i.e. Bio-MOS Reg; mannan oligosaccharide at 1g/kg diet and a probiotic i.e. Bio-Plus Reg2B, Bacillus subtilis and Bacillus licheniformis at 0.4 g/kg diet) attained significantly (P<0.05) higher body weight than those rabbits supplemented with either probiotic (Bio-MOS,MOS1), probiotic (Bio-Plus, PLUS1) or control group. They further reported that body weight of rabbits were significantly (P<0.05) higher for MIX1 than MIX2 (mixture of MOS and PLUS and supplemented to rabbits at 5 weeks of age); however, there was non-significant difference between the body weight values of MIX1 and MOS1. El-Maksoud et al. (2014) reported that live body weight and total body weight gain were significantly (P<0.01) the highest with New Zealand White rabbits group that were supplement Prebiotics in drinking water during 8-12 week period than that of either 6-10, 10-14 or 12-14 weeks period (2187.75g vs 1451.50g). Sevidoglu and Galip (2014) observed that final body weight and total weight gain did not differ significantly (P<0.05) when male New Zealand White rabbits (aged 5-6 weeks) were reared on basal diet (control) or supplemented with live yeast culture, i.e. Saccharomyces cerevisae (SC at 3.0 g/kg diet), Spirulina plantenis (SP at 3.0 g/kg diet), or even other dietary combinations. Zoccarato et al…Probiotic Supplementation in the Diet of Rabbits - A Review

3. Feed Intake and Feed Conversion Efficiency

Csikvary et al. (1990) reported that 6 week old New Zealand White rabbits when commercial mixed pelleted diet supplemented with a probiotic (Lactiferm) at 0, 0.2 and 0.8 g each every second day mixed with drinking water feed conversion efficiency. Zoccarato et
al. (1995) reported that growing rabbits when they were given mixed feed with antibiotic (bambermycin at 4 mg/kg) sporegion probiotic (9.6×10⁹ CFU/g composed of Bacillus Subtilis + Bacillus Licheniformis in the ratio of 50:50), antibiotic + probiotic (bambermycin at 2 mg plus probiotic at 200 mg/kg) and basal (control) diet was (4.5, 4.7, 4.4 vs 4.9) respectively and antibiotic and probiotic significantly (P<0.05) increased feed conversion efficiency without modifying feed intake. Beilanski et al. (1998) reported that supplementation of Bb probiotic in complete diet on 35 days old rabbit decreased feed intake by 0.1 kg per Kg weight gain. Bonanno et al. (1999) observed that in the growth phase of rabbit (Hyla multiporuses), from 6 to 9 weeks, when they were provided commercial feed along with a probiotic (containing 3×10⁹ spores/g of Bacillus Licheniformis and B. Subtilis in 1:1 ratio at a concentration of 600 mg/kg diet) at zero level (without probiotic), gave better feed conversion efficiency (3.9 vs 3.4 vs 3.4). Abdel-Azeem et al. (2004b) revealed that feed conversion efficiency was improved significantly (P<0.05) when the New Zealand White rabbits (35 days aged) received diet supplemented with 20 mg virginiamycin, 100 mg zincc bacitracin, 1 g bioaction (probiotic), 1.5 g and 3.0 g yeast culture (Saccharomyces cerevisiae) per kg diet when compared to the control group. Matusevicius et al. (2004) showed that the feed conversion efficiency of rabbits supplemented with Yeasture probiotics decreased significantly (P<0.05) by 7.2-18.4 percent when control ration was supplemented with 1.5 and 2.0 kg probiotic/ ton, respectively. Amber et al. (2004) observed that Yucca schidigera extract at the rate of 250 mg/kg feed or Lact-A-Bac (probiotic) at the rate of 0.5 g/kg feed when added increased the feed conversion efficiency significantly (P<0.01) by 3.62 for probiotic treated and 3.87 for control group in 5-13 days old rabbit reduced mortality. Kristas et al. (2008) reported that rabbits treated with Probiotic (containing B. licheniformis and B. subtilis) at the age of 41 to 88 days had a significantly (P<0.05) better feed conversion ratio as compared to MPW or non-MPW diet without supplementation. El-Katcha et al. (2011) reported that the influence of dietary supplementation of probiotic at 0.1 or 0.15 g/kg diet from E. faecum containing products (Proteinx) and Lacto bacillus acidophilus and other L. strain with enzyme (AM Phi-Bact) had reduced daily feed intake by 9.1 percent, 7.6 percent, 16.2 percent and 11.3 percent, respectively when compared with control. Dietary supplementation of E. faecum containing products (Proteinx) significantly (P<0.05) improved feed conversion ratio by 13.0 percent and 13.1 percent. Wallace et al. (2012) revealed that supplementation of probiotic (RE3) either at 1.0 or 1.5 ml per kg feed in the diet of heterogeneous population of California White, New Zealand White and Chinchilla weaner cross-bred rabbits had no influence feed intake but demonstrated a significant improvement (P<0.05) in feed conversion efficiency. Simonova et al. (2013) observed better feed conversion efficiency in the rabbits fed on commercial diet along with Enterococcus faecium CCM7420 (EF) than E. senticus extract (ES) or their combination (EF+ES) or control group. Amber et al. (2014) observed that the rabbits (at the age of 3 weeks) when fed basal diet supplemented with MIX1 (mixture of probiotic i.e. Bio-MOS Reg; mannan oligosaccharide at 1 g/kg diet and a probiotic i.e. Bio-Plus Reg.2B, Bacillus subtilis and Bacillus licheniformis at 0.4 g/kg diet) significantly (P<0.05) increased feed intake (P<0.05).

4. Mortality / Livability and Performance Index

Gippert et al. (1992) observed that supplementation of probiotic Lacto-sacca to the diet at 1g/ton on 4-12 week aged rabbit decreased mortality by 3 to 6 per cent. Bielanski et al. (1998) observed that feeding complete diet with Bb probiotic to 35 days old rabbit reduced mortality. Kustos et al. (2004) observed that supplementation of Bioplus 2B Reg at 400 mg/kg to Pannon White rabbits lowered the mortality rate by 17 per cent and morbidity by 3 per cent resulting in a 20 percent decrease (P<0.01) in sanitary risk (morbidity and mortality) during fattening period. Matusevicius et al. (2006) revealed that dietary inclusion of probiotic (at 400 mg/kg BioPlus 2B corresponding to 1.28×10⁹ CFU/g feed stuff, i.e. 6.4×10⁷ CFU/g of Bacillus licheniformis and 6.4×10⁷ CFU/g of B. subtilis pelleting) in the diet rabbits (35 day old) the morbidity and mortality rate were 3 and 17 per cent lower (P<0.01) during fattening period. Kristas et al. (2008) reported that rabbits treated with Probiotic (containing B. licheniformis and B. subtilis) at the age of 41 to 88 days significantly (P<0.05) decreased in the mortality rate when compared to the control group.
Pascault et al. (2008) observed that dietary supplementation with 1000 ppm Toyocerin Reg. (1× 10⁹ spores of Bacillus cereus var toyoi/g) reduced the mortality and sanitary risk index of rabbit during fattening period. Chrastinova et al. (2010) revealed that application of probiotic strain E. faecium AL4 strain (10⁸ cfu/ml, 500 ml, animal/day) influenced mortality and energetic meat value. El-deek et al. (2013) reported that performance index of male New Zealand White rabbits at 14 weeks of aged were significantly (P<0.01) improved by diets supplementation with 0.2% Super Action Probiotic. Simonova et al. (2013) observed that dietary supplementation with Enterococcus faecium CCM7420 (EF) and E. senticosus extract (ES) or their combination (EF+ES) stimulated the leukocytes phagocytosis and reduced the pathogen in rabbit’s digestive tract without oxidative stress. Amber et al. (2014) observed that the rabbits (at the age of 3 weeks) when fed basal diet supplemented with MIX1 (mixture of prebiotic i.e. Bio-MOS Reg; mannan oligosaccharide at 1 g/kg diet and a probiotic i.e. Bio-Plus Reg. 2B, Bacillus subtilis and Bacillus licheniformis at 0.4 g/kg diet) reduced mortality.

5. Dressing Percentage and Carcass Quality/Yield

Blaz et al. (1991) observed that supplementation of probiotic Paciflor Reg at 10⁹/g through two consecutive period at 23⁰C - 28⁰C and 18⁰C – 22⁰C, until rabbit reached 2 kg live weight, the average daily gain during fattening period was increased by 2g/day (P<0.05). Kermamer and Struklec (1996) observed that addition of probiotic Acid-Pack-4-way (AP4W) on the diet of rabbit increased (P<0.05) the dressing percentage and carcass weight. Ahmed et al. (1997) reported that addition of probiotic N-FAC 1000 (1 g/kg feed) and CYC-100 (2 g/kg feed) with two dietary protein level (14 and 16 per cent) improved carcass weight, protein content and water holding capacity. Abdel-Azeem et al. (2004b) revealed that New Zealand White rabbits (35 days aged) when received diet supplemented with 20 mg virginiamycin, 100 mg zinc bacitracin, 1 g bioaction (probiotic) 1.5 g and 3.0 g yeast culture (Saccharomyces cerevisiae) significantly (P<0.05) increased dressing percentage and carcass weight percentage. Matusevicus et al. (2004) observed that the live weight of rabbit supplemented with Yeasture probiotic at 1.5 and 2.0 kg probiotic/ton increased significantly (P<0.05) meat protein content by 1.8 per cent and 4.1 per cent and fat content by 0.2 per cent and 0.7 per cent, respectively. Al-Sultan (2005) reported that supplementation of probiotic (Tri-Mic) at 0.75g probiotic/10 liters of drinking water on rabbits does not affect the carcass weight. Lui et al. (2005) reported that inclusion of probiotic (containing Lactobacillus acidophilus, L. casei, Bifidobacterium bifidum, Streptococcus salivarius, Enterococcus faecium, Bacillus subtilis, B. toyoi and Saccharomyces cerevisiae) at a level of 0.00, 0.01, 0.02 and 0.03% in the diet of growing rabbits had no significant effect (P>0.05) on performance and carcass yield. Abdel-Azeem et al. (2009) reported that with supplementation of 200 mg Bioplus 2B (probiotic) or 400 mg Bioplus 2B per kg feed on the diet of rabbit increased the dressing percentage, Heart weight percentage increased while kidney fat weight percentage decreased. Zonato et al. (2009) studied the addition of growth factor, i.e. control, antibiotic (0.05% zinc bacitracin) probiotic (0.15% Bacillus subtilis at 109 cfu/g) probiotic (0.15% phosphorylated mannan oligosaccharides at 30%) and symbiotic (probiotic+ prebiotic) in the diet of growing New Zealand White rabbits and concluded that addition of probiotic or probiotic does not improve carcass weight, kidney, liver, lungs, hearth, etc. Dimitrova et al. (2010) observed that average carcass weight were better in rabbits received lucerne hay and commercial pellets and probiotic with biotin (Probikan with biotin) than those with probiotic without biotin (Probikan without biotin) or with coccidiostat e Sb3 or control group. Wallace et al. (2012) revealed that supplementation of probiotic (RE3) either at 1.0 or 1.5 ml per kg feed in the diet of heterogeneous population of California White, New Zealand White and chinchilla weaner cross-bred rabbits had no influence on live weight, full stomach, full gastro intestinal and carcass length. However it causes changes in the warm and chilled dress weight. Brzozowski and Strezemacki (2013) observed that addition of Bacillus Cereus Var. Toyoi, as probiotic factor on young rabbit’s diet at a level of 400 mg/kg of probiotic preparation showed positive result during fattening and dressing percentage.

6. Economy of Feeding Probiotics

Zoccarato et al. (1995) observed that with the addition of antibiotic (bambermycin at 4 mg/kg) sporigen probiotic (9.6x10⁹ CFU/g composed of Bacillus Subtilis + Bacillus Licheniformism in the ratio of 50:50), antibiotic + probiotic (bambermycin at 2 mg plus probiotic at 200 mg/kg) reduced feed cost by 6.7 per cent. El-Adawy et al. (2000) recorded the highest economical efficiency value with the addition of either 0.1 or 0.2 percent probiotic (Lact-A-Bac) or 0.05, 0.1 or 0.2 percent antibiotic (Sufacik +20). Surdjiska et al. (2004) reported that higher doses of probiotic (0.08%) did not favour better economical result and concluded that 0.05% was recommended dose for rabbits. Abdel-Azeem et al. (2009) observed the best net return, percentage of economic efficiency; relative economic
efficiency and performance index were obtained by supplementing 400 mg Bioplus 2B on diet of the rabbits. Onu and Obole (2010) observed that supplementation of 50 per cent Maize Processing Waste (MPW) with 200 mg of enzyme (grindazym) or 200 mg probiotic (yeast) enhanced the rabbit performance and successfully reduced feed cost of maize. El et al. (2011) recorded that dietary supplementation of probiotic at 0.1 or 0.15 g/kg diet from E. faecium containing products (Protexin) improve economical efficiency percent by about 64.9% and 49.7% on two different groups. Shahata et al. (2012) studied the effect by addition of amino-yeast at 0.25, 0.50 and 0.75 percent on the diet of growing rabbit and concluded that there was an improvement in carcass trait and economic efficiency. El-deek et al. (2013) observed that dietary supplementation of 0.2 percent Super Action Probiotic (SAP) on the diet of 14 week old male New Zealand White rabbits improved economic efficiency.

References

