Meat: Prestigious or Indecorous?

A. Santos14, E. Gomes-Neves35 and J.M. Correia da Costa23

1Pathology and Molecular Genetics PhD Programme, ICBAS, University of Porto, Rua de Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal.
2Department of Infectious Disease, National Institute of Health, Dr Ricardo Jorge, Porto, Portugal, Rua Alexandre Herculano nº321, 4000-055 Porto, Portugal.
3Center for the Study of Animal Science, ICETA, University of Porto, Rua D Manuel II, Apt 55142, 405-401 Porto, Portugal.
4Vetdiagnos, Diagnóstico Veterinário Lda, Cantanhede, Parque Tecnológico de Cantanhede, Núcleo 04, Lote 4A, 3060-197 Cantanhede, Portugal.
5ICBAS, University of Porto, Rua de Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal.

*Corresponding Author: A. Santos E-mail: anasssantos@gmail.com
Received: 22/08/2016 Accepted: 19/09/2016

Abstract

Meat has been a key component of the human diet since the earliest times of humanity. However, consumption of meat is controversial because it favors high incidence of metabolic and chronic diseases including diabetes type II or cardiovascular diseases, cancer, and food borne diseases. Does the human diet require meat? In our view, meat is a good and prestigious food fundamental to a well-balanced diet (100 gram/day/person) is respected. The notice of the Swiss physician Paracelsus (b.1493-d.1541) "sola dosis facit venenum" seems appropriate here.

Keywords: Meat Consumption, Human health, Chemical residues, Foodborne diseases.

1. Introduction

Food supply has played a decisive role in the process of humanization. Consensually, worldwide, and in all languages, we assume: “we are what we eat”. In particular, consumption of meat is part of our evolutionary heritage (Smil, 2002) it is consensual the acceptance of it’s role on the definition of the contours of elegance and wit of modern man, basically due to the biological high quality of proteins, richness in vitamins and minerals and high concentration of energy (Higgs, 2000; Biesalski, 2005; Wójcik et al., 2010; Pereira and Vicente, 2013; Leroy and Praet, 2015; Rohrmann and Linseisen, 2015).

Meat consumption has been accepted as a good indicator of economic and social well-being; it is a prestigious food and its consumption has increased in recent years, especially in developing countries (FAO, 2015). However, meat, like other foods, does not exclusively provide nutrients and energy. Also microorganisms, chemical residues, allergens (Taylor and Latham, 2001; OMS/FAO, 2003; WHO, 2016) and imaginarium, can be incorporated during a meat meal. In the present opinion article, we emphasize controversial aspects related with meat consumption: i) over consumption and chronic diseases; ii) chemical residues and cancer; iii) microorganisms and food safety.

The symbolic value of meat is out of reference in this manuscript. Recently, abundant literature data describe new chemical waste molecules in the meat subsequent to current conservation processes (drying, freezing canning smoking, salting etc.) (Baiano, 2014; Chaves-López et al., 2015; Santarelli et al., 2009), and cooking (grilled, baked etc.), (Seb-Choudhury et al., 2014; Rohrmann and Linseisen, 2015). The consonance of this knowledge is reason enough to take into account the advice warned of Paracelsus: "sola dosis facit venenum".

According to this ancient scholar, all things are poison and nothing is without poison, only the dosage makes the thing not poison (Paracelsus, 1965). Thus, in addition to all the controversy (to eat or not to eat meat - respectable if taken responsibly), meat consumption should comply with two fundamental pillars: the sufficient amount (following nutritional recommendations) (USDA, 2015) and hygiene enough to minimize risk of microbiological contamination (EFSA, 2015).

2. Meat Consumption, a Balance between Good and Bad
2.1 Over Consumption and Chronic Diseases

In this work, we assume meat definition in accordance with European Regulation (EC) Nº 853/2004, (EC, 2004). The meat consumption per capita had an annual increased absolutely uncommon (Bruinsma, 2003). In undeveloped countries, according to FAO, a 2.9% meat consumption growth rate is predicted between 2005/2007-2030 (FAO, 2012). In developed countries, 0.6% meat consumption growth rate is expected during this interval (FAO, 2012). Despite of the recommended annual meat consumption of \(\approx 33.0 \text{ kg/per capita} (= 100g/day) \), in 2014 alone were consumed 76.1 kg/year/per capita in developed countries and 33.7 kg/year per capita in undeveloped countries (FAO, 2015; USDA, 2015). These data highlight the urgency of reducing meat consumption in developed countries. This average figure masks a more worrying situation affecting the undeveloped countries population presenting a large portion of their population dying of hunger or suffering from poverty with subsequent nutritional inadequacies. According to WHO (2015), metabolic disorders and cardiovascular diseases are exclusively related to the increased rate of the meat over consumption (OMS/FAO, 2003; Kouvari et al., 2015; WHO, 2015).

2.2 Chemical Residues and Cancer

According to IARC, processed meat is meat that suffered alteration procedures like salting, curing, fermentation, smoking, or other processes to increase flavor or improve preservation (IARC, 2015). Recently, new molecules favoring cancer risk have been described in meat and particularly in meat products. Recent studies point out the specific role of meat components like haem iron, nitrosamines, and heterocyclic aromatic amines identified as cancer responsible (Jakszyn, 2011; IARC, 2016; Bingham, 2002; Mirvish, 1995). In addition, chemical compounds termed heterocyclic amines (HCAs) and polycyclic aromatic hydrocarbons (PAHs) were identified which are formed when muscle meat is cooked using high-temperature as takes place during pan frying or grilling directly over an open flame (Cross and Sinha, 2004; Santarelli et al., 2009; Hamidi et al., 2016; Rohrmann and Linseisen, 2015; Lee et al., 2016). These metabolites play an important role in carcinogenesis.

2.3 Microorganisms and Food Safety

According to USA official data, in the period between 1998 and 2008, meat consumption was responsible for 41.1% of bacterial, 10.8% of viral, 8.9% of chemical and 0.1% of parasitic annual domestically acquired food borne illnesses. More than 40% of bacterial food borne detected diseases was due to the ingestion of contaminated meat and poultry (Painter et al., 2013). In EU, in 2013, a total of 5196 food borne outbreaks were described affecting globally 43183 human cases with 5946 hospitalizations and 11 deaths (EFSA, 2015). The main route of zoonosis transmission is diet (Harrison et al., 2013). Remarkable efforts have been undertaken in European Union in order to limit the extent of foodborne infections, with the implementation of improved hygiene standards in pre and post harvest meat chain. However, the number of infections originated in ingestion of contaminated meat remains high (Rohde et al., 2015; Garrido et al., 2013; Dhama et al., 2013).

In order to minimize the role of meat as vector of microorganisms it seems imperative: i) to implement in farms animal welfare rules with education of farmers and enforcement of existing legislation; ii) to promote a conscientious fulfilment of the Hazard Analysis and Critical Control Point (HACCP) and Good Manufacturing Practices (GMP) and an efficient training among meat handlers (Gomes-Neves et al., 2012); iii) efficient and rapid detection and tracing microorganisms in food chain by using sensitive, specific and economic tests based on DNA amplification (Fisher et al., 2007). Finally, consumer education is crucial in common and practical aspects of food safety and nutritional requirements in order to ensure informed choices about food and meat choices, how to use the kitchen for cooking, the appropriate food handling and storage methods.

3. Conclusion

Eating meat may be a healthy and pleasant social and bio-cultural act. Consumer education in order to respect the recommended nutritional intake of meat in tandem with food safety practices can be expected to minimize risks related with cancer, chronic diseases and food borne illness.

Acknowledgements

This work was supported by the Fundação para a Ciência e Tecnologia, (FCT), Portugal for the PhD Grant SFRH/BDE/51889/2012 and Pest-OE/AGR/UI0211/2011 and Strategic Project UI211/2015/2016.

References

Santarelli RL, Pierre F, and Corpet DE (2009). Processed meat and colorectal cancer: a review of epidemiologic...